

FURTHER MATHEMATICS Teach Yourself Series

Topic 11: Measurement and Trigonometry

A: Level 14, 474 Flinders Street Melbourne VIC 3000 T: 1300 134 518 W: tssm.com.au E: info@tssm.com.au

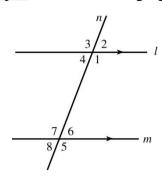
© TSSM 2016 Page 1 of 9

Contents

Geometry	3
Basic geometry	
As it appears in Unit 2	3
Review Questions	
Perimeter and area	
As it appears in Unit 2	5
Review Questions	5
Total surface areas and volumes	5
As it appears in Unit 2	5
Review Questions	6
Similar figures	6
As it appears in Unit 2	6
Review Questions	6
Scale factors	,6
As it appears in Unit 4	
Review Questions	6
Trigonometry	3
Right angled triangles	
As it appears in Unit 2	3
Review Questions	
Non-right angled triangles	
As it appears in Unit 2	5
Review Questions	
Radian Measurement	5
As it appears in Unit 2	5
Review Questions	
Applications of Trigonometry	6
As it appears in Unit 4	
Review Questions	6
Solutions to Review Questions	6

Geometry

This area of study is important in many professions that use geometrical concepts and associated techniquesfor example, architecture, navigation and art. It is a helpful tool to describe shapes of objects, directions on a car trip or design of a house.


Basic geometry

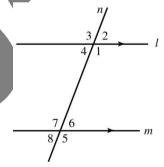
As it appears in Unit 2

- Point marker for a location in space
- Line segment two points connected
- Ray line segment extended to infinity in one direction
- Line line segment extended to infinity in both directions
- Angle where two lines meet
- Parallel two lines that never meet
- Perpendicular two lines that cut each other at 90°
- Transversal a line intersecting a pair of parallel lines
 - ♦ Corresponding angles are equal
 - ♦ Co-interior angles add up to 180°
 - ♦ Alternate angles are equal
- Vertically opposite angles angles formed by two intersecting lines (are equal)
- Supplementary angles add up to 180°
- Complementary angles add up to 90°
- Polygon closed figure made up of 3 or more line segments
- Sum of interior angles of a polygon $S = (n-2) \times 180^{\circ}$ where n is the no. of sides
- Regular polygon polygon with equal sides/angles
- Interior angle of a regular n-sided polygon $\frac{(n-2)\times 180^{\circ}}{n}$
- Triangle polygon with 3 sides
 - Sum of angles in a triangle is 180°
 - ❖ Circumcentre where the perpendicular bisectors of a triangle meet
 - Centroid point where the lines connecting each vertex with the midpoint of the opposite sides meet
 - ❖ Incentre where the angle bisectors of each vertex meet
 - ❖ Scalene triangle with no equal sides
 - ❖ Isosceles triangle with two sides equal
 - ❖ Equilateral triangle with all sides/angles equal

© TSSM 2016 Page 3 of 9

Example. For the following figure, if angle 3 is 105° answer a to e giving reasons

a. Find the value of angle 2

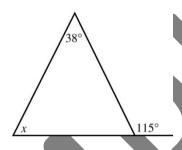

 180° - 105° = 75° (linear pair add up to 180°)

- b. Find the value of angle 1105° (vertically opposite angles)
- c. Find the value of angle 675° (angles 2 & 6 are corresponding angles)
- d. Find the value of angle 875° (angles 6 & 8 are vertically opposite angles)
- e. Find the value of angle 5

 $180^{\circ} - 75^{\circ} = 105^{\circ}$ (linear pair)

Review Questions

1. Consider the following figure –


a. Write down pairs of angles which are vertically opposite

L	White derro		1	مادة فالعدد	:
D.	write down	pairs of	angles	wnich	are co-interior

c. Write down pairs of angles which are alternate

d. Write down pairs of angles which are corresponding

2. From the following figure –

- **a.** Find the angle marked x
- **b.** Name the kind of triangle

3. Angles that add up to 180° are called

- A. Obtuse angles
- **B.** Reflex angles
- **C.** Vertically opposite angles
- D. Complementary angles
- E. Supplementary angles

© TSSM 2016 Page 5 of 9

Solutions to Review Questions

1.

2.

a.
$$115^{\circ} = x + 38^{\circ}$$

 $x = 115^{\circ} - 38^{\circ} = 77^{\circ}$

- **b.** Scalene triangle
- **3.** Answer: E
- 4. Answer: B

Explanation:

$$S = (n-2) \times 180^{\circ} = (6-2) \times 180^{\circ} = 4 \times 180^{\circ} = 720^{\circ}$$

5.

a.
$$5 + 6 + 8 = 19$$
cm

b.
$$A = \sqrt{s(s-a)(s-b)(s-c)} = \sqrt{9.5(9.5-8)(9.5-6)(9.5-5)} = 15cm^2$$

6.

b.
$$A = \frac{1}{2}(10+12) \times 7 = 77cm^2$$

7.

a.
$$2(lw + wh + lh)$$

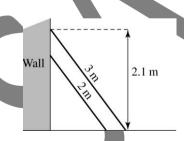
b.
$$2(15 \times 9 + 9 \times 7 + 15 \times 7) = 606 \text{ m}^2 = 6060000 \text{ cm}^2$$

c.
$$15 \times 9 \times 7 = 945 \text{ m}^3$$

8.

b.
$$TSA = \left(2 \times \frac{1}{2} \times 3 \times 4\right) + (5 \times 12) + (3 \times 12) + (4 \times 12) = 156cm^2$$

c.
$$V = \frac{1}{2} \times 3 \times 4 \times 12 = 72 \text{ cm}^3$$


9. Answer: E

Explanation:

$$V = \frac{1}{2} \times \frac{4}{3} \times \pi \times 7.5^{3} = 281.25\pi$$

10.

a

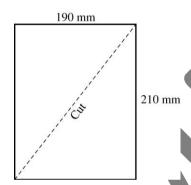
b.
$$\frac{x}{2} = \frac{2.1}{3} \Rightarrow x = 1.4m$$

11. Answer: D

Explanation:

Volume scale factor = 2:1

Length scale factor = $\sqrt[3]{2}$:1


12. Answer: A

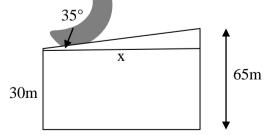
Explanation:

$$\frac{volume\ of\ water}{volume\ of\ air} = \frac{\frac{1}{3} \times \pi \left(\frac{r}{2}\right)^2 \left(\frac{1}{2}h\right)}{\frac{1}{3} \times \pi r^2 h - \frac{1}{3} \times \pi \left(\frac{r}{2}\right)^2 \left(\frac{1}{2}h\right)} = \frac{\frac{1}{8}}{\frac{7}{8}} = \frac{1}{7}$$

13.

a.

b.


Length of diagonal =
$$\sqrt{210^2 + 190^2}$$

 $\approx 283.196 \,\text{mm}$

c

Length of width =
$$\sqrt{490^2 - 190^2}$$

 $\approx 451.664 \,\text{mm}$

14.

a.

b. $tan(35^{\circ}) = 35/x$ which gives x = 50m

c. 35° (it is the same as the angle of elevation)

© TSSM 2016 Page 9 of 9